Lab 29: End-to-End Pedigree Reconstruction Implementation
Core Component: This lab serves as a capstone experience, bringing together all components of Bonsai v3 into a comprehensive end-to-end pedigree reconstruction implementation. Here, we'll integrate the various modules, algorithms, and techniques covered throughout the course to build a complete pipeline from raw genetic data to visualized, interpretable pedigrees.
The Capstone Project
Building a Complete Reconstruction Pipeline
The goal of this capstone project is to implement a complete pedigree reconstruction pipeline using Bonsai v3, integrating all components from data preparation through visualization, with a focus on handling real-world data challenges while producing interpretable, confidence-scored results.
Project Objectives
- Integration: Combine all major Bonsai v3 components into a cohesive system
- Robustness: Handle real-world data challenges including missing data and quality issues
- Usability: Create clear inputs, outputs, and visualizations for end users
- Reproducibility: Ensure consistent results across multiple runs
- Performance: Optimize for practical use with reasonably sized datasets
Implementation Strategy
- Modular Architecture: Organize code into distinct components with clear interfaces
- Staged Processing: Implement sequential processing stages with well-defined inputs/outputs
- Configuration System: Support flexible parameter configuration for different use cases
- Quality Assurance: Include validation checks at each processing stage
- Logging and Monitoring: Implement comprehensive logging for process tracking
Project Requirements
The implementation must meet these core requirements:
- Input Flexibility: Accept various formats of genetic and genealogical data
- Complete Processing: Transform raw data into validated pedigree structures
- Evidence Tracking: Maintain connections between conclusions and supporting evidence
- Confidence Assessment: Provide clear confidence measures for all inferences
- Visual Output: Generate interpretable visualizations of results
- Documentation: Include clear documentation for all components and workflows
End-to-End Workflow Design
Architecting the Complete Pipeline
The end-to-end pedigree reconstruction pipeline consists of several key stages, each building on the previous one:
Pipeline Architecture
┌─────────────────┐ ┌───────────────┐ ┌────────────────────┐ │ Data Preparation│────▶│ IBD Detection │────▶│ Relationship │ │ & Validation │ │ & Processing │ │ Inference │ └─────────────────┘ └───────────────┘ └────────────────────┘ │ ▼ ┌─────────────────┐ ┌───────────────┐ ┌────────────────────┐ │ Visualization │◀────│ Validation & │◀────│ Pedigree │ │ & Reporting │ │ Analysis │ │ Construction │ └─────────────────┘ └───────────────┘ └────────────────────┘
Stage 1: Data Preparation and Validation
This initial stage focuses on preparing and validating the input data:
- Format Detection: Automatically identifying input data formats
- Data Conversion: Converting various formats to Bonsai's internal format
- Quality Control: Filtering low-quality data and identifying issues
- Metadata Integration: Incorporating age information, known relationships, etc.
- Data Normalization: Standardizing identifiers, coordinates, and measurements
Stage 2: IBD Detection and Processing
This stage handles the detection and processing of IBD segments:
- IBD Detection: Using appropriate algorithms to identify shared DNA segments
- Segment Filtering: Removing false positives and low-confidence segments
- Segment Merging: Combining adjacent or overlapping segments when appropriate
- Statistics Calculation: Computing key IBD statistics for relationship inference
- Quality Assessment: Evaluating the reliability of detected segments
Stage 3: Relationship Inference
This stage focuses on inferring relationships from IBD patterns:
- Pairwise Analysis: Computing pairwise relationship likelihoods
- Age Integration: Incorporating age-based constraints
- Prior Application: Applying prior probability models
- Relationship Ranking: Ranking possible relationships by likelihood
- Confidence Assessment: Calculating confidence measures for each inference
Stage 4: Pedigree Construction
This stage builds pedigree structures from inferred relationships:
- Small Structure Building: Creating trios, quartets, and other small structures
- Structure Merging: Combining small structures into larger pedigrees
- Conflict Resolution: Resolving contradictions between different evidence sources
- Optimization: Finding maximum likelihood pedigree configurations
- Incremental Addition: Adding individuals to the pedigree one by one
Stage 5: Validation and Analysis
This stage validates and analyzes the constructed pedigrees:
- Consistency Checking: Verifying the logical consistency of the pedigree
- Evidence Validation: Confirming that the pedigree explains the genetic evidence
- Statistical Analysis: Computing summary statistics for the pedigree
- Quality Assessment: Evaluating the overall quality and reliability of the reconstruction
- Alternative Evaluation: Assessing alternative pedigree configurations
Stage 6: Visualization and Reporting
This final stage focuses on presenting the results:
- Pedigree Visualization: Creating graphical representations of the pedigree
- Confidence Visualization: Representing confidence levels visually
- Report Generation: Creating detailed reports of the analysis process and results
- Result Export: Exporting results in various formats for further use
- Interactive Exploration: Enabling interactive exploration of the results
Pipeline Configuration Example
# Example pipeline configuration PIPELINE_CONFIG = { "data_preparation": { "input_formats": ["vcf", "23andme", "ancestry", "ftdna", "gedcom"], "quality_filters": { "min_snp_count": 500, "min_segment_cm": 7.0, "max_gap_cm": 2.0 }, "normalization": { "coordinate_build": "GRCh38", "genetic_map": "eagle_2017_chr{chromosome}.txt" } }, "ibd_detection": { "algorithm": "refined_ibd", "parameters": { "min_cm": 7.0, "min_snp": 500, "window_size": 64 }, "post_processing": { "merge_segments": True, "gap_threshold_cm": 2.0 } }, "relationship_inference": { "models": ["standard", "age_based", "population_specific"], "parameters": { "min_confidence": 0.8, "use_priors": True, "population": "european" } }, "pedigree_construction": { "strategy": "incremental", "prioritization": "confidence", "conflict_resolution": "maximum_likelihood", "optimization_iterations": 5 }, "validation": { "consistency_checks": ["logical", "genetic", "demographic"], "confidence_threshold": 0.85, "alternative_count": 3 }, "visualization": { "format": "png", "show_confidence": True, "highlight_focus_individuals": True, "style": "family_tree", "max_generations": 5 } }
Data Preparation Implementation
Building the Data Preparation Module
The data preparation module is responsible for processing raw genetic data and preparing it for IBD detection and analysis. This module must handle various data formats, perform quality control, and create standardized inputs for the next stages.
Component Structure
# Data preparation module structure class DataPreparation: def __init__(self, config): """ Initialize data preparation module. Args: config: Configuration dictionary for data preparation """ self.config = config self.format_handlers = { "vcf": self._process_vcf, "23andme": self._process_23andme, "ancestry": self._process_ancestry, "ftdna": self._process_ftdna, "gedcom": self._process_gedcom } def process_input_files(self, input_files): """ Process input files and prepare data for IBD detection. Args: input_files: List of input file paths Returns: Processed data ready for IBD detection """ processed_data = [] for file_path in input_files: # Detect file format file_format = self._detect_format(file_path) # Process file using appropriate handler if file_format in self.format_handlers: processor = self.format_handlers[file_format] processed_file = processor(file_path) processed_data.append(processed_file) else: raise ValueError(f"Unsupported file format: {file_format}") # Perform quality control on processed data filtered_data = self._apply_quality_filters(processed_data) # Normalize data to standard format normalized_data = self._normalize_data(filtered_data) return normalized_data def _detect_format(self, file_path): """Detect file format based on content and extension.""" # Implementation details... def _process_vcf(self, file_path): """Process VCF format files.""" # Implementation details... def _process_23andme(self, file_path): """Process 23andMe format files.""" # Implementation details... # Other format handlers... def _apply_quality_filters(self, data): """Apply quality filters to processed data.""" # Implementation details... def _normalize_data(self, data): """Normalize data to standard format.""" # Implementation details...
Format Handling Implementation
Each format handler must parse the specific format and convert it to Bonsai's internal representation:
def _process_vcf(self, file_path): """ Process VCF format files. Args: file_path: Path to VCF file Returns: Processed genetic data in internal format """ # Initialize VCF parser vcf_reader = VCFParser(file_path) # Extract samples and variants samples = vcf_reader.get_samples() variants = vcf_reader.get_variants() # Convert to internal representation processed_data = { "samples": samples, "variants": self._convert_variants(variants), "metadata": vcf_reader.get_metadata(), "format": "vcf", "original_path": file_path } return processed_data
Quality Control Implementation
The quality control methods filter data based on configurable criteria:
def _apply_quality_filters(self, data): """ Apply quality filters to processed data. Args: data: List of processed data dictionaries Returns: Filtered data meeting quality criteria """ filtered_data = [] for dataset in data: # Apply variant-level filters if "variants" in dataset: dataset["variants"] = self._filter_variants( dataset["variants"], min_quality=self.config["quality_filters"].get("min_variant_quality", 30), max_missing=self.config["quality_filters"].get("max_missing_rate", 0.1) ) # Apply sample-level filters if "samples" in dataset: dataset["samples"] = self._filter_samples( dataset["samples"], min_call_rate=self.config["quality_filters"].get("min_call_rate", 0.9) ) # Add quality metrics to metadata dataset["metadata"]["quality_metrics"] = self._calculate_quality_metrics(dataset) filtered_data.append(dataset) return filtered_data
Key Challenges in Data Preparation
The data preparation stage addresses several key challenges:
- Format Diversity: Consumer DNA testing companies use different file formats
- Coordinate Systems: Different genomic builds use different coordinate systems
- Data Quality: Raw data often contains errors, missing values, and artifacts
- Identifier Reconciliation: Matching identifiers across different data sources
- Metadata Integration: Incorporating age, sex, and other metadata
Addressing these challenges requires flexible, robust data processing implementations.
IBD Detection and Processing Implementation
Implementing the IBD Processing Stage
The IBD detection and processing stage identifies shared DNA segments between individuals and prepares them for relationship inference. This stage might use external IBD detection tools and then process the results within Bonsai.
Component Structure
# IBD detection and processing module structure class IBDProcessor: def __init__(self, config): """ Initialize IBD processor module. Args: config: Configuration dictionary for IBD processing """ self.config = config self.detection_algorithms = { "refined_ibd": self._run_refined_ibd, "ibis": self._run_ibis, "germline": self._run_germline, "hapibd": self._run_hapibd } def process_genetic_data(self, genetic_data): """ Process genetic data to identify IBD segments. Args: genetic_data: Processed genetic data from data preparation stage Returns: Detected and processed IBD segments """ # Prepare data for IBD detection prepared_data = self._prepare_for_detection(genetic_data) # Run selected IBD detection algorithm algorithm = self.config["algorithm"] if algorithm in self.detection_algorithms: detector = self.detection_algorithms[algorithm] raw_segments = detector(prepared_data) else: raise ValueError(f"Unsupported IBD detection algorithm: {algorithm}") # Post-process detected segments processed_segments = self._post_process_segments(raw_segments) # Calculate IBD statistics ibd_statistics = self._calculate_ibd_statistics(processed_segments) return { "segments": processed_segments, "statistics": ibd_statistics, "metadata": { "algorithm": algorithm, "parameters": self.config["parameters"], "quality_metrics": self._calculate_quality_metrics(processed_segments) } } def _prepare_for_detection(self, genetic_data): """Prepare genetic data for IBD detection.""" # Implementation details... def _run_refined_ibd(self, prepared_data): """Run Refined-IBD algorithm.""" # Implementation details... # Other algorithm implementations... def _post_process_segments(self, raw_segments): """Post-process detected IBD segments.""" # Implementation details... def _calculate_ibd_statistics(self, segments): """Calculate IBD statistics for relationship inference.""" # Implementation details...
Algorithm Integration Implementation
Example implementation for integrating with an external IBD detection tool:
def _run_refined_ibd(self, prepared_data): """ Run the Refined-IBD algorithm for IBD detection. Args: prepared_data: Prepared genetic data in format required by Refined-IBD Returns: Raw IBD segments detected by Refined-IBD """ # Generate command-line parameters parameters = [ "-min", str(self.config["parameters"]["min_cm"]), "-length", str(self.config["parameters"]["min_snp"]), "-window", str(self.config["parameters"]["window_size"]) ] # Create temporary files for input/output input_file = self._create_temporary_input(prepared_data) output_file = tempfile.NamedTemporaryFile(delete=False).name # Build command for external process command = ["refined-ibd", input_file, output_file] + parameters # Execute external process try: subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: raise RuntimeError(f"Refined-IBD execution failed: {e}") # Parse output file raw_segments = self._parse_refined_ibd_output(output_file) # Clean up temporary files os.unlink(input_file) os.unlink(output_file) return raw_segments
Post-Processing Implementation
The post-processing methods refine raw IBD segments:
def _post_process_segments(self, raw_segments): """ Post-process detected IBD segments. Args: raw_segments: Raw IBD segments from detection algorithm Returns: Processed IBD segments ready for relationship inference """ processed_segments = raw_segments.copy() # Filter segments based on quality criteria processed_segments = self._filter_segments( processed_segments, min_cm=self.config["parameters"]["min_cm"], min_snp=self.config["parameters"]["min_snp"] ) # Merge adjacent segments if configured if self.config["post_processing"]["merge_segments"]: processed_segments = self._merge_adjacent_segments( processed_segments, gap_threshold=self.config["post_processing"]["gap_threshold_cm"] ) # Convert coordinates if needed processed_segments = self._standardize_coordinates(processed_segments) # Remove known false positives processed_segments = self._remove_false_positives(processed_segments) return processed_segments
IBD Statistics Calculation Example
def _calculate_ibd_statistics(self, segments): """ Calculate IBD statistics for relationship inference. Args: segments: Processed IBD segments Returns: Dictionary of IBD statistics by individual pair """ statistics = {} # Group segments by individual pair paired_segments = self._group_by_individual_pair(segments) # Calculate statistics for each pair for pair_id, pair_segments in paired_segments.items(): id1, id2 = pair_id.split("-") # Calculate total IBD sharing total_ibd = sum(segment["cm_length"] for segment in pair_segments) # Calculate segment count segment_count = len(pair_segments) # Find longest segment longest_segment = max(segment["cm_length"] for segment in pair_segments) if pair_segments else 0 # Calculate chromosome-specific statistics chromosomes = {} for segment in pair_segments: chr_num = segment["chromosome"] if chr_num not in chromosomes: chromosomes[chr_num] = { "total_ibd": 0, "segment_count": 0, "longest_segment": 0 } chromosomes[chr_num]["total_ibd"] += segment["cm_length"] chromosomes[chr_num]["segment_count"] += 1 chromosomes[chr_num]["longest_segment"] = max( chromosomes[chr_num]["longest_segment"], segment["cm_length"] ) # Store pair statistics statistics[pair_id] = { "id1": id1, "id2": id2, "total_ibd": total_ibd, "segment_count": segment_count, "longest_segment": longest_segment, "chromosomes": chromosomes } return statistics
Core Bonsai Integration
Using Bonsai's Relationship Inference Module
The core of the pipeline leverages Bonsai v3's sophisticated relationship inference capabilities to analyze IBD patterns and predict relationships between individuals. This stage maps directly to the core modules we've studied throughout this course.
Relationship Inference Module
# Relationship inference module structure class RelationshipInference: def __init__(self, config): """ Initialize relationship inference module. Args: config: Configuration dictionary for relationship inference """ self.config = config # Initialize Bonsai components self.pw_log_like = PwLogLike() # Configure models self._configure_models() def infer_relationships(self, ibd_data): """ Infer relationships from IBD data. Args: ibd_data: Processed IBD data from IBD processing stage Returns: Inferred relationships with confidence scores """ # Extract IBD statistics ibd_stats = ibd_data["statistics"] # Infer pairwise relationships pairwise_relationships = self._infer_pairwise_relationships(ibd_stats) # Apply age constraints if available if "age_based" in self.config["models"]: pairwise_relationships = self._apply_age_constraints(pairwise_relationships, ibd_data["metadata"]) # Apply population-specific adjustments if configured if "population_specific" in self.config["models"]: pairwise_relationships = self._apply_population_adjustments( pairwise_relationships, population=self.config["parameters"]["population"] ) # Apply prior probabilities if configured if self.config["parameters"]["use_priors"]: pairwise_relationships = self._apply_priors(pairwise_relationships) # Filter by confidence threshold filtered_relationships = self._filter_by_confidence( pairwise_relationships, min_confidence=self.config["parameters"]["min_confidence"] ) return filtered_relationships def _configure_models(self): """Configure relationship inference models.""" # Implementation details... def _infer_pairwise_relationships(self, ibd_stats): """Infer pairwise relationships from IBD statistics.""" # Implementation details... def _apply_age_constraints(self, relationships, metadata): """Apply age-based constraints to relationship inferences.""" # Implementation details... def _apply_population_adjustments(self, relationships, population): """Apply population-specific adjustments.""" # Implementation details... def _apply_priors(self, relationships): """Apply prior probabilities to relationship inferences.""" # Implementation details... def _filter_by_confidence(self, relationships, min_confidence): """Filter relationships by confidence threshold.""" # Implementation details...
Pairwise Relationship Inference Implementation
Example implementation for inferring pairwise relationships:
def _infer_pairwise_relationships(self, ibd_stats): """ Infer pairwise relationships from IBD statistics. Args: ibd_stats: Dictionary of IBD statistics by individual pair Returns: Dictionary of inferred relationships by individual pair """ relationships = {} for pair_id, stats in ibd_stats.items(): id1, id2 = stats["id1"], stats["id2"] # Calculate relationship likelihoods likelihoods = self.pw_log_like.get_likelihoods( total_ibd=stats["total_ibd"], num_segments=stats["segment_count"], longest_segment=stats["longest_segment"] ) # Rank relationships by likelihood ranked_relationships = sorted( likelihoods.items(), key=lambda x: x[1], reverse=True ) # Calculate confidence scores confidence_scores = self._calculate_confidence_scores(likelihoods) # Store results relationships[pair_id] = { "id1": id1, "id2": id2, "most_likely": ranked_relationships[0][0], "likelihood": ranked_relationships[0][1], "confidence": confidence_scores[ranked_relationships[0][0]], "alternatives": [ { "relationship": rel, "likelihood": lik, "confidence": confidence_scores[rel] } for rel, lik in ranked_relationships[1:5] # Store top 5 alternatives ], "all_likelihoods": likelihoods } return relationships
Age Constraint Implementation
Example implementation for applying age-based constraints:
def _apply_age_constraints(self, relationships, metadata): """ Apply age-based constraints to relationship inferences. Args: relationships: Dictionary of inferred relationships metadata: Dictionary containing age information Returns: Relationships with age constraints applied """ constrained_relationships = {} # Extract age information ages = self._extract_ages(metadata) for pair_id, rel_data in relationships.items(): id1, id2 = rel_data["id1"], rel_data["id2"] # Skip if age information is missing if id1 not in ages or id2 not in ages: constrained_relationships[pair_id] = rel_data continue age1, age2 = ages[id1], ages[id2] # Calculate age-based log likelihoods age_log_likes = {} for rel, genetic_ll in rel_data["all_likelihoods"].items(): # Get expected age difference for relationship age_mean, age_std = get_age_mean_std_for_rel_tuple(rel) # Calculate age difference age_diff = abs(age1 - age2) # Calculate age log likelihood age_ll = get_age_log_like(age_diff, age_mean, age_std) # Combine genetic and age likelihoods combined_ll = genetic_ll + age_ll age_log_likes[rel] = combined_ll # Recalculate rankings with combined likelihoods ranked_combined = sorted( age_log_likes.items(), key=lambda x: x[1], reverse=True ) # Calculate new confidence scores combined_confidence = self._calculate_confidence_scores(age_log_likes) # Update relationship data constrained_relationships[pair_id] = { "id1": id1, "id2": id2, "most_likely": ranked_combined[0][0], "likelihood": ranked_combined[0][1], "confidence": combined_confidence[ranked_combined[0][0]], "alternatives": [ { "relationship": rel, "likelihood": lik, "confidence": combined_confidence[rel] } for rel, lik in ranked_combined[1:5] ], "all_likelihoods": age_log_likes, "age_constrained": True } return constrained_relationships
Integration with Bonsai Core
This module directly integrates with Bonsai v3's core classes:
- PwLogLike: For calculating pairwise log likelihoods
- get_age_mean_std_for_rel_tuple(): For retrieving age relationship parameters
- get_age_log_like(): For calculating age-based log likelihoods
- InferDegree: For inferring relationship degrees
- Prior: For applying prior probability models
This integration brings together the mathematical models and calibrated parameters we've studied throughout the course.
Pedigree Construction Implementation
Building the Pedigree Structure
The pedigree construction module transforms pairwise relationship inferences into coherent pedigree structures, leveraging Bonsai v3's pedigree representation and merging algorithms.
Component Structure
# Pedigree construction module structure class PedigreeConstructor: def __init__(self, config): """ Initialize pedigree construction module. Args: config: Configuration dictionary for pedigree construction """ self.config = config def construct_pedigree(self, relationship_data): """ Construct pedigree from relationship inferences. Args: relationship_data: Inferred relationships from relationship inference stage Returns: Constructed pedigree with confidence information """ # Prioritize relationships by confidence prioritized_relationships = self._prioritize_relationships(relationship_data) # Initialize empty pedigree pedigree = self._initialize_pedigree() # Build small structures first small_structures = self._build_small_structures(prioritized_relationships) # Merge small structures if self.config["strategy"] == "incremental": # Incremental addition strategy for structure in small_structures: pedigree = self._add_structure_incremental(pedigree, structure) else: # Combine structures strategy pedigree = self._combine_structures(small_structures) # Optimize pedigree optimized_pedigree = self._optimize_pedigree( pedigree, iterations=self.config["optimization_iterations"] ) # Add confidence annotations annotated_pedigree = self._annotate_confidence(optimized_pedigree, relationship_data) return annotated_pedigree def _prioritize_relationships(self, relationship_data): """Prioritize relationships for pedigree construction.""" # Implementation details... def _initialize_pedigree(self): """Initialize empty pedigree structure.""" # Implementation details... def _build_small_structures(self, prioritized_relationships): """Build small pedigree structures from prioritized relationships.""" # Implementation details... def _add_structure_incremental(self, pedigree, structure): """Add small structure to pedigree incrementally.""" # Implementation details... def _combine_structures(self, structures): """Combine multiple small structures into a pedigree.""" # Implementation details... def _optimize_pedigree(self, pedigree, iterations): """Optimize pedigree structure.""" # Implementation details... def _annotate_confidence(self, pedigree, relationship_data): """Annotate pedigree with confidence information.""" # Implementation details...
Building Small Structures Implementation
Example implementation for building small pedigree structures:
def _build_small_structures(self, prioritized_relationships): """ Build small pedigree structures from prioritized relationships. Args: prioritized_relationships: Prioritized list of relationship inferences Returns: List of small pedigree structures """ small_structures = [] used_pairs = set() # First pass: build parent-child pairs (direct connections) for rel_data in prioritized_relationships: pair_id = f"{rel_data['id1']}-{rel_data['id2']}" # Skip if already used if pair_id in used_pairs: continue # Check if parent-child relationship if rel_data["most_likely"] in ["PC", "GP", "PO"]: # Create up-node dict for parent-child structure if rel_data["most_likely"] in ["PC", "PO"]: # Parent-child parent, child = self._determine_parent_child( rel_data["id1"], rel_data["id2"], rel_data["most_likely"] ) up_dict = {child: parent} else: # Grandparent relationship - create placeholder parent gp, gc = self._determine_parent_child( rel_data["id1"], rel_data["id2"], rel_data["most_likely"] ) placeholder = f"placeholder_{len(small_structures)}" up_dict = {gc: placeholder, placeholder: gp} # Create small structure structure = { "up_dict": up_dict, "confidence": rel_data["confidence"], "relationship_type": rel_data["most_likely"] } small_structures.append(structure) used_pairs.add(pair_id) # Second pass: build sibling pairs for rel_data in prioritized_relationships: pair_id = f"{rel_data['id1']}-{rel_data['id2']}" # Skip if already used if pair_id in used_pairs: continue # Check if sibling relationship if rel_data["most_likely"] in ["FS", "HS"]: id1, id2 = rel_data["id1"], rel_data["id2"] # Create placeholder parents father = f"placeholder_father_{len(small_structures)}" mother = f"placeholder_mother_{len(small_structures)}" # Create up-node dict based on relationship type if rel_data["most_likely"] == "FS": # Full siblings up_dict = {id1: [father, mother], id2: [father, mother]} else: # Half siblings - create just one shared parent shared_parent = father # Arbitrary choice, could be mother up_dict = {id1: shared_parent, id2: shared_parent} # Create small structure structure = { "up_dict": up_dict, "confidence": rel_data["confidence"], "relationship_type": rel_data["most_likely"] } small_structures.append(structure) used_pairs.add(pair_id) # Additional passes for other relationship types... return small_structures
Incremental Structure Addition Implementation
Example implementation for adding structures incrementally:
def _add_structure_incremental(self, pedigree, structure): """ Add small structure to pedigree incrementally. Args: pedigree: Current pedigree structure structure: Small structure to add Returns: Updated pedigree with structure integrated """ # Extract up-node dictionaries pedigree_up_dict = pedigree.get("up_dict", {}) structure_up_dict = structure["up_dict"] # Find overlapping individuals pedigree_ids = set(pedigree_up_dict.keys()).union(set(pedigree_up_dict.values())) structure_ids = set(structure_up_dict.keys()).union(set(structure_up_dict.values())) overlapping_ids = pedigree_ids.intersection(structure_ids) # If no overlap, simply combine dictionaries if not overlapping_ids: combined_up_dict = {**pedigree_up_dict, **structure_up_dict} return { "up_dict": combined_up_dict, "confidence": pedigree.get("confidence", {}), "additions": pedigree.get("additions", []) + [structure] } # With overlap, use Bonsai's combine_up_dicts algorithm combined_up_dict = combine_up_dicts( pedigree_up_dict, structure_up_dict, resolve_conflicts=self.config["conflict_resolution"] ) # Update confidence information combined_confidence = self._combine_confidence( pedigree.get("confidence", {}), {k: structure["confidence"] for k in structure_up_dict.keys()} ) return { "up_dict": combined_up_dict, "confidence": combined_confidence, "additions": pedigree.get("additions", []) + [structure] }
Pedigree Optimization Example
def _optimize_pedigree(self, pedigree, iterations): """ Optimize pedigree structure through iterative refinement. Args: pedigree: Current pedigree structure iterations: Number of optimization iterations Returns: Optimized pedigree structure """ current_pedigree = pedigree for i in range(iterations): # Calculate current likelihood current_likelihood = self._calculate_pedigree_likelihood(current_pedigree) # Generate alternative configurations alternatives = self._generate_alternative_configurations(current_pedigree) # Evaluate alternatives best_alternative = current_pedigree best_likelihood = current_likelihood for alt in alternatives: alt_likelihood = self._calculate_pedigree_likelihood(alt) if alt_likelihood > best_likelihood: best_alternative = alt best_likelihood = alt_likelihood # Update current pedigree if improvement found if best_likelihood > current_likelihood: current_pedigree = best_alternative else: # No improvement - stop early break # Log optimization progress logging.info(f"Optimization iteration {i+1}: likelihood = {best_likelihood}") # Set optimization metadata current_pedigree["optimization"] = { "iterations": i + 1, "final_likelihood": best_likelihood, "converged": (i + 1 < iterations) } return current_pedigree
Validation and Visualization Implementation
Validating and Presenting Results
The final stages of the pipeline focus on validating the constructed pedigree and creating interpretable visualizations of the results. These components ensure that the pedigree is reliable and accessible to users.
Validation Module
# Pedigree validation module structure class PedigreeValidator: def __init__(self, config): """ Initialize pedigree validator module. Args: config: Configuration dictionary for validation """ self.config = config def validate_pedigree(self, pedigree, ibd_data, relationship_data): """ Validate pedigree against genetic evidence and logical constraints. Args: pedigree: Constructed pedigree ibd_data: IBD data used for construction relationship_data: Relationship inferences used for construction Returns: Validated pedigree with quality metrics """ # Perform logical consistency checks consistency_results = self._check_logical_consistency(pedigree) # Validate against genetic evidence genetic_results = self._validate_against_genetic_evidence( pedigree, ibd_data, relationship_data ) # Check demographic plausibility demographic_results = self._check_demographic_plausibility(pedigree) # Calculate overall quality score quality_score = self._calculate_quality_score( consistency_results, genetic_results, demographic_results ) # Generate alternative pedigrees alternatives = self._generate_alternatives( pedigree, relationship_data, count=self.config["alternative_count"] ) # Add validation results to pedigree validated_pedigree = pedigree.copy() validated_pedigree["validation"] = { "logical_consistency": consistency_results, "genetic_validation": genetic_results, "demographic_plausibility": demographic_results, "quality_score": quality_score, "alternatives": alternatives } return validated_pedigree def _check_logical_consistency(self, pedigree): """Check pedigree for logical consistency.""" # Implementation details... def _validate_against_genetic_evidence(self, pedigree, ibd_data, relationship_data): """Validate pedigree against genetic evidence.""" # Implementation details... def _check_demographic_plausibility(self, pedigree): """Check demographic plausibility of pedigree.""" # Implementation details... def _calculate_quality_score(self, consistency_results, genetic_results, demographic_results): """Calculate overall quality score for pedigree.""" # Implementation details... def _generate_alternatives(self, pedigree, relationship_data, count): """Generate alternative pedigree configurations.""" # Implementation details...
Visualization Module
# Pedigree visualization module structure class PedigreeVisualizer: def __init__(self, config): """ Initialize pedigree visualizer module. Args: config: Configuration dictionary for visualization """ self.config = config def create_visualizations(self, pedigree): """ Create visualizations of pedigree structure. Args: pedigree: Validated pedigree structure Returns: Dictionary of visualization outputs """ # Create main pedigree visualization main_viz = self._create_main_visualization(pedigree) # Create focused sub-pedigree visualizations if configured focused_vizs = {} if self.config["highlight_focus_individuals"]: for focus_id in self._identify_focus_individuals(pedigree): focused_vizs[focus_id] = self._create_focused_visualization( pedigree, focus_id, max_generations=self.config["max_generations"] ) # Create alternative visualizations if available alternative_vizs = {} if "validation" in pedigree and "alternatives" in pedigree["validation"]: for i, alt in enumerate(pedigree["validation"]["alternatives"]): alternative_vizs[f"alternative_{i+1}"] = self._create_main_visualization(alt) # Generate comparison visualization if alternative_vizs: comparison_viz = self._create_comparison_visualization( pedigree, pedigree["validation"]["alternatives"] ) else: comparison_viz = None return { "main": main_viz, "focused": focused_vizs, "alternatives": alternative_vizs, "comparison": comparison_viz, "format": self.config["format"] } def _create_main_visualization(self, pedigree): """Create main pedigree visualization.""" # Implementation details... def _identify_focus_individuals(self, pedigree): """Identify focus individuals for sub-pedigree visualization.""" # Implementation details... def _create_focused_visualization(self, pedigree, focus_id, max_generations): """Create focused sub-pedigree visualization around focus individual.""" # Implementation details... def _create_comparison_visualization(self, main_pedigree, alternative_pedigrees): """Create visualization comparing main pedigree with alternatives.""" # Implementation details...
Main Visualization Implementation
Example implementation for creating the main pedigree visualization:
def _create_main_visualization(self, pedigree): """ Create main pedigree visualization. Args: pedigree: Pedigree structure to visualize Returns: Visualization data in specified format """ # Extract up-node dictionary up_dict = pedigree["up_dict"] # Convert to Graphviz DOT format dot_graph = self._convert_to_graphviz( up_dict, confidence=pedigree.get("confidence", {}), style=self.config["style"] ) # Set graph attributes dot_graph.graph_attr.update({ 'rankdir': 'TB', 'splines': 'ortho', 'nodesep': '0.8', 'ranksep': '1.0', 'fontname': 'Arial', 'bgcolor': 'white' }) # Set node attributes dot_graph.node_attr.update({ 'shape': 'box', 'style': 'filled', 'fillcolor': 'lightblue', 'fontname': 'Arial', 'margin': '0.2,0.1' }) # Set edge attributes dot_graph.edge_attr.update({ 'color': 'darkblue', 'penwidth': '1.5', 'arrowsize': '0.8' }) # Apply confidence coloring if configured if self.config["show_confidence"]: self._apply_confidence_styling(dot_graph, pedigree.get("confidence", {})) # Render to specified format output_format = self.config["format"] output_data = dot_graph.pipe(format=output_format) return { "data": output_data, "format": output_format, "dot": dot_graph.source }
Pipeline Integration Example
# Complete end-to-end pipeline example def run_end_to_end_pipeline(input_files, config_file=None): """ Run complete end-to-end pedigree reconstruction pipeline. Args: input_files: List of input file paths config_file: Optional path to configuration file Returns: Complete pipeline results """ # Load configuration if config_file: with open(config_file, 'r') as f: config = json.load(f) else: config = DEFAULT_PIPELINE_CONFIG # Initialize pipeline modules data_prep = DataPreparation(config["data_preparation"]) ibd_processor = IBDProcessor(config["ibd_detection"]) rel_inference = RelationshipInference(config["relationship_inference"]) ped_constructor = PedigreeConstructor(config["pedigree_construction"]) validator = PedigreeValidator(config["validation"]) visualizer = PedigreeVisualizer(config["visualization"]) # Run data preparation stage logging.info("Stage 1: Data Preparation") processed_data = data_prep.process_input_files(input_files) # Run IBD detection stage logging.info("Stage 2: IBD Detection") ibd_data = ibd_processor.process_genetic_data(processed_data) # Run relationship inference stage logging.info("Stage 3: Relationship Inference") relationship_data = rel_inference.infer_relationships(ibd_data) # Run pedigree construction stage logging.info("Stage 4: Pedigree Construction") pedigree = ped_constructor.construct_pedigree(relationship_data) # Run validation stage logging.info("Stage 5: Validation and Analysis") validated_pedigree = validator.validate_pedigree( pedigree, ibd_data, relationship_data ) # Run visualization stage logging.info("Stage 6: Visualization and Reporting") visualizations = visualizer.create_visualizations(validated_pedigree) # Generate final report report = generate_pipeline_report( processed_data, ibd_data, relationship_data, validated_pedigree, visualizations ) return { "pedigree": validated_pedigree, "visualizations": visualizations, "report": report, "metadata": { "config": config, "input_files": input_files, "timestamp": datetime.datetime.now().isoformat() } }
Project Documentation and Reporting
Communicating Results Effectively
The final component of the end-to-end implementation is the documentation and reporting system, which ensures that the pipeline's results are understandable and actionable for end users.
Report Generation Implementation
def generate_pipeline_report(processed_data, ibd_data, relationship_data, pedigree, visualizations): """ Generate comprehensive report on pipeline results. Args: processed_data: Results from data preparation stage ibd_data: Results from IBD detection stage relationship_data: Results from relationship inference stage pedigree: Validated pedigree structure visualizations: Visualization outputs Returns: Structured report on pipeline results """ report = { "summary": { "title": "Pedigree Reconstruction Report", "timestamp": datetime.datetime.now().isoformat(), "individuals": len(set(pedigree["up_dict"].keys()).union(set(pedigree["up_dict"].values()))), "relationships": len(relationship_data), "quality_score": pedigree["validation"]["quality_score"], "main_findings": summarize_main_findings(pedigree, relationship_data) }, "data_preparation": { "input_files": len(processed_data), "individual_count": count_unique_individuals(processed_data), "quality_metrics": extract_quality_metrics(processed_data) }, "ibd_detection": { "algorithm": ibd_data["metadata"]["algorithm"], "segment_count": len(ibd_data["segments"]), "quality_metrics": ibd_data["metadata"]["quality_metrics"], "statistics": summarize_ibd_statistics(ibd_data["statistics"]) }, "relationship_inference": { "relationship_count": len(relationship_data), "relationship_types": count_relationship_types(relationship_data), "confidence_distribution": analyze_confidence_distribution(relationship_data), "key_relationships": identify_key_relationships(relationship_data) }, "pedigree_structure": { "structure_summary": summarize_pedigree_structure(pedigree), "validation_results": summarize_validation_results(pedigree["validation"]), "confidence_assessment": assess_overall_confidence(pedigree), "alternatives_summary": summarize_alternatives(pedigree["validation"]["alternatives"]) }, "visualizations": { "main_visualization": {"format": visualizations["format"]}, "focused_visualizations": len(visualizations["focused"]), "alternative_visualizations": len(visualizations["alternatives"]) } } # Generate detailed sections report["detailed_sections"] = { "relationship_details": generate_relationship_details(relationship_data), "pedigree_structure_details": generate_structure_details(pedigree), "validation_details": generate_validation_details(pedigree["validation"]), "technical_details": generate_technical_details( processed_data, ibd_data, relationship_data, pedigree ) } return report
Documentation Structure
The end-to-end implementation includes comprehensive documentation at multiple levels:
- Code Documentation: Detailed docstrings for all classes, methods, and functions
- Architecture Documentation: Descriptions of the pipeline components and their interactions
- Configuration Documentation: Detailed explanation of all configuration options
- User Guide: Instructions for using the pipeline for different use cases
- Result Interpretation Guide: Guidance on interpreting pipeline outputs
# Example docstring for the main pipeline function def run_end_to_end_pipeline(input_files, config_file=None): """ Run complete end-to-end pedigree reconstruction pipeline. This function orchestrates the entire pedigree reconstruction process, from raw data preparation through visualization. It executes each pipeline stage in sequence, passing the outputs of each stage to the next. The pipeline consists of the following stages: 1. Data Preparation: Convert input files to internal format and validate 2. IBD Detection: Identify shared DNA segments between individuals 3. Relationship Inference: Infer relationships from IBD patterns 4. Pedigree Construction: Build pedigree structure from relationships 5. Validation: Validate pedigree against evidence and constraints 6. Visualization: Create visual representations of the pedigree Args: input_files: List of paths to input files. Supported formats include: VCF, 23andMe, AncestryDNA, FTDNA, and GEDCOM. config_file: Optional path to JSON configuration file. If not provided, default configuration will be used. Returns: Dictionary containing: pedigree: The validated pedigree structure visualizations: Generated visualizations in specified format report: Comprehensive report on pipeline results metadata: Configuration and execution metadata Raises: ValueError: If input files are invalid or missing ConfigurationError: If configuration is invalid ProcessingError: If any pipeline stage fails Examples: >>> results = run_end_to_end_pipeline( ... ["sample1.vcf", "sample2.ancestry.txt"], ... "custom_config.json" ... ) >>> pedigree = results["pedigree"] >>> main_viz = results["visualizations"]["main"]["data"] >>> quality_score = results["report"]["summary"]["quality_score"] """
Key Documentation Components
Comprehensive documentation for the end-to-end implementation should include:
- Installation Guide: Instructions for installing the pipeline and dependencies
- Configuration Guide: Detailed explanation of all configuration options
- Input Format Guide: Specifications for all supported input formats
- Output Format Guide: Descriptions of all output formats and structures
- API Reference: Complete reference for programmatic integration
- Example Workflows: Step-by-step examples for common use cases
- Troubleshooting Guide: Solutions for common issues and errors
- Performance Optimization: Guidelines for optimizing performance
Conclusion and Next Steps
In this lab, we've explored the implementation of a complete end-to-end pedigree reconstruction pipeline using Bonsai v3. We've seen how the various components we've studied throughout this course come together to form a cohesive system capable of transforming raw genetic data into interpretable pedigree structures.
By implementing this pipeline, we've demonstrated the practical application of Bonsai v3's sophisticated algorithms and data structures, and we've created a framework that can be adapted to various genetic genealogy contexts and challenges.
In our final lab, we'll explore advanced applications of this pipeline in various domains, as well as future directions for research and development in computational pedigree reconstruction.
Your Learning Pathway
Interactive Lab Environment
Run the interactive Lab 29 notebook in Google Colab:
Google Colab Environment
Run the notebook in Google Colab for a powerful computing environment with access to Google's resources.
Data will be automatically downloaded from S3 when you run the notebook.
Note: You may need a Google account to save your work in Google Drive.
This lab is part of the Visualization & Advanced Applications track:
Rendering
Lab 21
Interpreting
Lab 22
Twins
Lab 23
Complex
Lab 24
Real-World
Lab 25
Performance
Lab 26
Prior Models
Lab 27
Integration
Lab 28
End-to-End
Lab 29
Advanced
Lab 30